NASA Aviation Safety and Security Program (AvSSP)

June 16, 2003
Mary F. Wadel
Project Manager, Aircraft Icing

National Challenge

NASA Aviation Safety Program

We Need to Continuously Improve Aviation Safety

*Accident and Departure data through 31 December 2002

FINAL REPORT TO PRESIDENT CLINTON

White House Commission on Aviation Safety and Security

VICE PRESIDENT AL GORE, CHAIRMAN FEBRUARY 12, 1997

"We will achieve a national goal of reducing the fatal aircraft accident rate by 80% within 10 years."

President William J. Clinton, February 12, 1997

AvSSP Anticipated Impacts

NASA Aviation Safety Program

NASA Strategic Goal 2--Enable a safer, more secure, efficient, and environmentally friendly air transportation system.

NASA Aero Blueprint

■ Security and safety

must be maintained.

Aero Tech Theme Objective--Protect Air Travelers and the Public

Decrease the aircraft fatal accident rate and the vulnerability of the air transportation system to threats and mitigate the consequences of accidents and hostile acts.

Vehicle Safety Technologies

NASA Aviation Safety Program

Objective: Provide Resiliency Against:

- Vehicle System/Component Failures
- Unusual Attitude Loss of Control
- Loss of Situation Awareness due to Low Visibility
- Post Crash & In-Flight Fires

Accident Categories and Causes/Factors:

- Loss of Control
- Controlled Flight Into Terrain (CFIT)
- Runway Incursions
- System/Component Failures

Technology Focus: Aircraft Vehicle Applications

Weather Safety Technologies

NASA Aviation Safety Program

- <u>Objective</u>: Develop and foster the implementation of technologies that will reduce the role of atmospheric conditions (weather, including icing and turbulence) in aviation fatal accidents, incidents, and injuries.
- Accident Categories and Causes/Factors*:
 - lcing and other weather hazards are significant causal or major contributing factors to aviation accidents and incidents.
 - Turbulence is a contributing factor to a large number of aviation incidents involving serious passenger and crew injury.
 - Further, many CFIT and Loss-Of-Control accidents are due to weather-related crew error which could be mitigated by
 - timely, intuitive weather information in the cockpit
 - education and training aids used prior to encountering atmospheric hazards.
- <u>Technology Focus</u>: Weather decision-aiding information, avoidance, and mitigation technologies; icing design and analysis tools; and icing education and training aids for a range of GA, business, and commercial transport applications.

[*as identified by ASIST, National Aviation Weather Initiative & Plan, CAST]

System Safety Technologies

NASA Aviation Safety Program

- Objective: A system-wide approach to safe operation and pro-active management of aviation safety risk, enabling a reduction in *frequency* and *severity* of undesired events.
 - Mitigation of safety risk associated with human error and human performance limitations across multiple aviation domains.
 - Development of technologies enabling continuous monitoring and identification of system-wide operational and safety trends, developing conditions, and precursor events/patterns before accidents occur.
- Accident Categories and Causes/factors
 - Human error
 - Accident precursors--known and unknown undesirable events
- <u>Technology Focus</u>: To provide reliable predictions of the system-wide effects of changes in technology, procedures, and training *before* they are introduced into the aviation system.
 - Advanced computational models of human performance within aviation contexts, improved training, improved operational and maintenance procedures, and technology product design guidelines.
 - Tools and methods which will provide air carriers, air traffic management personnel, and other air service providers with accurate, insightful, and pro-active measures of the safety, health, and performance of National Aviation System (NAS).

Aviation Safety and Security Program

Vehicle Safety Technologies

Weather Safety Technologies

System Safety Technologies

Aviation Security (FY 2004 Start)

Synthetic Vision Systems

Make every flight the equivalent of clear-day operations

Single Aircraft Accident Prevention

Self-healing designs and "refuse-to-crash" aircraft

Accident Mitigation

Increases survivability when accidents and aviation fires occur

Weather Accident Prevention

Brings intelligent weather decision-making to every cockpit

Aircraft Icing

Eliminate icing as an aviation hazard

Aviation System Monitoring & Modeling

Monitor and assess all data from every flight for known & unknown issues

System-Wide Accident Prevention

Improves human/machine integration in design, operations, & maintenance

Aircraft & Systems Hardening

Secure and protect the aircraft

Airspace Operation Systems

Harden the National Airspace System

Aviation Information Screening

Increase effectiveness of aviation info screening

Sensors

Integrate advanced sensors throughout the system

Synthetic Vision Systems

NASA Aviation Safety Program

Worldwide Terrain, Obstacle & Airport Databases

Real-time tactical hazards (FIS-B, NOTAMS)

Accurate
Position &
Orientation
(GPS, ADAHRS)

Real-time Synthetic Vision

Display w/ Advanced Guidance

Advanced Sensors for Database Integrity and/or Object Detection (May be too costly for GA)

Relevant Traffic Information (ADS-B, TIS-B)

Assumed elements of SVS for GA applications: low-cost CPUs, displays, databases, and datalinks are possible.

Single Aircraft Accident Prevention

Self-healing designs and "refuse-to-crash" aircraft

- Critical System Failure
- Adverse Conditions
- Crew Disorientation
- Invalid Control Laws

Resilient Systems for Failure/LoC Recovery

Operational Envelope

Upset

- Flight Validated
- Accurate Simulation Models
- Conventional Controls

Loss of Control Prevention Strategy

- Health Management to prevent initiating system/component failure
- Resilient Systems to recover if a failure or loss of control does occur

Accident Mitigation

NASA Aviation Safety Program

Improved structural modeling/prediction codes

Validated low false alarm fire detection design concepts through testing and analytical modeling of cargo compartment fire signatures.

Validated energy absorbing structures
- subfloor and seats reduced occupant
loads by 7 to 20%

Weather Accident Prevention

NASA Aviation Safety Program

Honeywell Weather Information Network (WINN) system used in UAL In-Service Evaluation demonstrated time savings and turbulence mitigation

In-service Evaluations of Satellite
Weather Information System
technologies by AA on pacific rim
routes demonstrated excellent
SATCOM link performance at low
elevation angles

Rockwell Enhanced Weather Radar (EWxR) system demonstrated the display of uplinked NEXRAD data combined with on-board radar data to provide the pilot with graphical weather information

Evaluated the impact of graphic weather information on pilot decision making with the Honeywell GA tethered weather information display:

- pilot confidence same as "out the window"
- data time delay not always understood
- contributed to RTCA FIS-B MASPS

ARNAV Weather Hazard Information system demonstrated the display of weather products in a GA cockpit

Aircraft Icing

NASA Aviation Safety Program

Icing Design & Analysis Tools: Develop

tools to accomplish better, safer designs and accurate evaluation of aircraft & aircraft sub-system performance under icing conditions for certification and qualification for flight.

Aircraft Ice Protection: Develop
systems technologies ensuring safe
flight of all aircraft in the icing Smart Icing System - Ice Management

environment.

Education & Training Tools: Develop materials that support knowledge about in-flight icing on the basic concepts of icing weather, icing operations, and the impact of ice on the aircraft.

Aircraft Icing - Work Breakdown Structure

NASA Aviation Safety Program

Aircraft Icing Project
Mary F. Wadel
Project Manager

Design & Analysis
Tools
Mark Potapczuk
Element Manager

Aircraft Ice Protection Andrew Reehorst Element Manager Education & Training
Thomas H. Bond
Element Manager

Computational Tools

Icing Avoidance

Pilot & Operator Education

Experimental Methods

Icing Tolerant Aircraft

Engineer Education

Experimental Databases

Icing Atmospheric Characterization

Pilot & Operator Training

Aviation System Monitoring & Modeling

NASA Aviation Safety Program

The People

600,000 Pilots
500,000+ Cabin Crew
17,500 Air Traffic
Controllers
380,000 Maintenance
Personnel

Aviation Safety Reporting System

National Aviation Operations Monitoring Service

The Aircraft

A320
200+ parameters/sec
X14 hrs/day
= 10,000,000 data
points/day

Aviation
Performance
Measurement
System

The System

DFW >2500 ops/day

Nationwide >40 million ops/yr Performance Data Analysis and Reporting System

System-Wide Accident Prevention

NASA Aviation Safety Program

Starts student learning about cockpit automation in small training airplane

Advanced portion of the training program for future airline pilots

Transitions student from small training airplane to commercial jet airliner

Iowa State University Press

Iowa State University Press (June 2001)

What's on the Horizon?

Planning Strategy for New Safety Elements

NASA Aviation Safety Program

FY00

AvSP

FY05

FY05

New Safety

FY10

Technology concepts developed to address current accident categories and precursors

- Runway Incursion Protection System
- Weather Information Datalink
- Fast-Time Simulation of System-Wide Risks
- Human Factors Tools
- Real-Time Health Monitoring Technologies

Integration of RETROFITABLE AvSP technologies/

products to address changes in NAS

- Integrated Situational Awareness System
- Integrated Hazard
 Alerting and Avoidance
 System
- Real-Time Safety
 Analysis Capability
- Immersive Flight Deck

REVOLUTIONARY technologies for all categories of aerospace vehicles operating in future airspace environment(s)

Plan for the Future

NASA Aviation Safety Program

- Continue to produce safety-enabling research products in cooperation with FAA and industry partners
 - Complete current Safety Projects
 - Plan new Safety R&D
- Initiate aviation security effort
 - Identify areas where industry or Gov't partners have need of NASA expertise
 - Leverage technologies from Safety to Security
 - Identify and address new vulnerabilities
- Move to risk-based assessment strategy
- Continue to take pro-active steps to assure technology transfer
 - Create joint roadmaps with FAA
 - Refine/create technology implementation plans

